On the Topology of Manifolds with Positive Isotropic Curvature Siddartha Gadgil and Harish Seshadri

نویسنده

  • HARISH SESHADRI
چکیده

We show that a closed orientable Riemannian n-manifold, n ≥ 5, with positive isotropic curvature and free fundamental group is homeomorphic to the connected sum of copies of S × S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Manifolds with Nonnegative Isotropic Curvature

We prove that if (M, g) is a compact locally irreducible Riemannian manifold with nonnegative isotropic curvature, then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature (ii) (M, g) is isometric to a locally symmetric space (iii) (M, g) is Kähler and biholomorphic to CP n. This is implied by the following two results: (i) Let (M, g) be a compact, l...

متن کامل

Surfaces of Bounded Mean Curvature in Riemannian Manifolds

Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on mean curvature and area. We show that on passing to a subsequence and choosing appropriate parametrisations, the inclusion maps converge in C to a map from a surface of genus g to M . We also show that, on passing to a further subsequence, the distance functions correspond...

متن کامل

Negative sectional curvature and the product complex structure

Let M = M1 ×M2 be a product of complex manifolds. We prove that M cannot admit a complete Kähler metric with sectional curvature K < c < 0 and Ricci curvature Ric > d, where c and d are arbitrary constants. In particular, a product domain in Cn cannot cover a compact Kähler manifold with negative sectional curvature. On the other hand, we observe that there are complete Kähler metrics with nega...

متن کامل

On the Smooth Rigidity of Almost-einstein Manifolds with Nonnegative Isotropic Curvature

Let (Mn, g), n ≥ 4, be a compact simply-connected Riemannian manifold with nonnegative isotropic curvature. Given 0 < l ≤ L, we prove that there exists ε = ε(l, L, n) satisfying the following: If the scalar curvature s of g satisfies l ≤ s ≤ L and the Einstein tensor satisfies |Ric − s n g| ≤ ε then M is diffeomorphic to a symmetric space of compact type. This is a smooth analogue of the result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008